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Abstract
Parameter tuning is a regular task and takes considerable

time for daily operations at FEL facilities. In this contri-
bution, we demonstrate SASE pulse energy optimization at
the European XFEL with Bayesian optimization (BO) as
an alternative approach to the widely used simplex method.
Preliminary experimental results show that BO could reach
a comparable performance as the simplex method, even with
an out-of-the-box implementation. Compared to previous
attempts, our version of BO does not require setting hyper-
parameters via additional measurements, thus effectively
reducing the required effort for machine operators to use it
during operation. On the other hand, BO has the potential to
be further improved by introducing prior physical knowledge
about the task and fine-tuning the algorithm to specific tasks.
This makes BO a promising candidate for routine tuning
tasks at particle accelerators in the future.

INTRODUCTION
Free electron lasers (FEL) are complex large-scale facil-

ities and provide intense X-ray pulses for numerous user
experiments. One particular challenge is the self-amplified
spontaneous emission (SASE) process, which is highly sen-
sitive to the beam condition and significantly affects the
output FEL power. Therefore, it can be time-consuming to
tune the FEL and maximize the pulse energy. At the Euro-
pean XFEL (EuXFEL) and many other particle accelerator
facilities, automatic tuning is often used during the opera-
tion to aid human operators in the simultaneous tuning of
multiple control parameters. These various methods have
been developed and applied to such tuning tasks, including
robust conjugate direction search [1], extremum seeking [2,
3], and the Nelder-Mead simplex method [4, 5]. Particularly,
Bayesian optimization (BO) has gained a lot of attention
recently as a sample-efficient method for black-box global
optimization. It has been successfully applied to a wide
range of tasks in accelerator physics, ranging from parame-
ter optimization in simulation [6–8] to online tuning [9–15].
In early works, BO has also been applied for the FEL tuning
task [16, 17]. In practice, however, it is not routinely used
because applying BO often requires expert knowledge, for
example, to set the hyperparameters appropriately. As a
result, Nelder-Mead simplex remains to be the most used
tool in daily operation at EuXFEL due to its simplicity and
reliability.
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Recent advances in software and design choices have sig-
nificantly reduced the overhead of implementing BO, making
it a viable plug-and-play tuning tool for various new tuning
tasks. In this contribution, we revisit the potential of utiliz-
ing BO as an operation tool for routine tuning tasks at FELs.
We benchmarked the performance of a BO implementation,
without any fine-tuning, against the daily-used simplex tool
for tuning the SASE pulse energy at EuXFEL.

OPTIMIZATION ALGORITHM
Bayesian optimization (BO) reduces the required opti-

mization steps by utilizing a statistical surrogate model of
the objective, mostly a Gaussian process [18] (GP), which is
built with the observation data. A GP is defined by its mean
and covariance function 𝒢(𝜇, 𝑘). The covariance function,
also known as the kernel, measures the similarity between
two input points. In this contribution, we use the Matérn-5/2
kernel to construct the full covariance function

𝑘(𝑥, 𝑥′) = 𝜎2
signal𝑘Matérn-5/2 (∥𝑥 − 𝑥′

𝑙 ∥) + 𝜎2
noise𝛿(𝑥, 𝑥′).

(1)
The signal variance 𝜎2

signal scales the covariance function and
the extra white noise term 𝜎2

noise describes the measurement
noise. The lengthscale 𝑙 describes how sensitive the objective
function is in each input parameter dimension.

The GP hyperparameters {𝜎2
signal, 𝑙, 𝜎2

noise} are key com-
ponents of Bayesian optimization, as they characterize the
underlying GP model. In the earlier BO implementation
of the Ocelot optimizer [16, 17], the hyperparameters are
determined beforehand by fitting the archived data. This re-
quires additional effort when applying BO for a new tuning
task. Instead of fixing the hyperparameters, we determine
them dynamically using log-likelihood fits during the opti-
mization. This data-driven approach is more robust against
machine condition changes and makes BO applicable to new
tuning tasks without available archived data.

In each BO step, the GP model is updated using the ob-
served data to predict the posterior mean 𝜇(𝑥′) and uncer-
tainty 𝜎(𝑥′) of a new point 𝑥′. The GP model predictions are
further used to calculate a so-called acquisition function 𝛼
to efficiently guide the optimization. The next sample point
is chosen by maximizing the acquisition function. Here we
use the upper confidence bound (UCB)

𝛼UCB(𝑥) = 𝜇(𝑥) + √𝛽𝜎(𝑥), (2)

where the exploration and exploitation are explicitly
weighted by a trade-off parameter 𝛽.
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A well-known problem of BO is its over-exploration
behavior as a global optimization method. Due to the
exploration-exploitation trade-off, it sometimes performs
large steps toward unexplored regions of the parameter space.
In practice, this can either lead to a sudden performance
drop or even cause damage in the case of high-energy ac-
celerators [13, 15]. Safety or step size constraints are often
introduced to mitigate this issue. In this contribution, we
employed a technique called proximal biasing [19]. Instead
of setting hard limits on the optimization step sizes, the next
sample point is chosen by maximizing the product of the
acquisition function and a normal distribution 𝒩 centered
at the current settings 𝑥(𝑡)

𝑥(𝑡+1) = arg max
𝑥

𝛼(𝑥) ⋅ 𝒩(𝑥(𝑡), 𝑙2b ). (3)

This acts effectively as a soft limit, as the possibility to sam-
ple distant parameter settings is reduced depending on the
biasing lengthscale 𝑙b. We used the BoTorch [20] frame-
work to implement the Bayesian optimization algorithm
mentioned above.

SASE OPTIMIZATION AT EUXFEL
For the measurements at European XFEL, we focused on

the FEL pulse energy optimization by adjusting the beam
orbit in the undulator sections. The SASE1 beamline con-
sists of 35 undulator cells, each equipped with two pairs
of horizontal and vertical air coil correctors. In order to
evaluate the performance of the optimization algorithms,
we manually detuned the settings and reduced the X-ray
pulse energy to about one order of magnitude lower than
what is obtained in normal operation. This was achieved
by disturbing the beam orbit at the beginning of the undu-
lators section. The BO and simplex optimizer were tasked
to restore the FEL performance by changing the air-coil
corrector magnets downstream of the undulators. The FEL
lasing process is highly non-linear and stochastic in nature,
which leads to high noise in the measured X-ray pulse en-
ergies. The noisy signal further affects the performance of
the optimizers and can lead to convergence in local optima,
instead of the global one. To mitigate that, we average 30
pulses to obtain a cleaner signal, corresponding to 3 s per
observation at 10 Hz repetition rate. The measured standard
deviation of the signal depending on the pulse energy is
shown in 1. Apart from the linear dependency for low pulse
energies, most signal noises are centered at 𝜇 = 126 µJ and
𝜎 = 100 µJ due to the stochastic beam condition. We first
benchmarked BO and simplex methods using one pair of air
coils with the same initial setting. The evolution of the two
corrector values is shown in 2. Compared to the simplex be-
havior, where parameters were oscillating before converging,
the proximal biased BO showed a much smoother conver-
gence towards the optimum. Although both methods were
able to maximize the pulse energy within 50 steps using air
coils in this case, a smooth parameter change is expected to
be more beneficial in situations where magnetic hysteresis
is present.

µstd = 126
σstd = 100
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Figure 1: Measurement noise with respect to the photon
pulse energy. The lower plot shows measured X-ray pulse
energies averaged over 30 shots and the corresponding stan-
dard deviations, where the density of the measured points is
color-coded. The upper plot shows the measurement noise in-
tegrated over all energies, giving an average noise of 126 µJ.
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Figure 2: Progress of BO and simplex for the two-
dimensional optimization task using one pair of horizontal
and vertical correctors in an undulator. The measured X-ray
pulse energies are shown in (a). The evolution of the correc-
tor values during the optimization steps for BO and simplex
are visualized in (b) and (c) respectively.
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Next, we repeated the optimization with an increasing
number of randomly selected air coils. As can be seen
in the 1, BO and simplex reached almost the same final
pulse energies in most cases. The only exception is the
four-dimensional case, where BO seemed to converge to a
local optimum. Furthermore, we also calculated the steps to
convergence for each method.

Table 1: Optimization results of BO and simplex with up to
ten tuning parameters. The number of steps to convergence
is defined as the step after which the variation of the objec-
tive values is smaller than the 226 µJ corresponding to the
measured signal noise.

Final pulse energy [µJ] Convergence steps
Dim. BO Simplex BO Simplex

2 2880 2864 22 36
4 2500 2900 27 28
6 2845 2852 34 45
8 3120 2944 102 105
10 3011 3049 84 78

Here we define convergence as the variation of the objec-
tive values is smaller than 226 µJ, corresponding to 1𝜎 upper
bound of the measurement noise. The required optimization
steps to convergence increase with the number of tuning
parameters, where BO reached a faster convergence than
the simplex method in four out of five trials. Both methods
were able to restore the FEL performance using 10 tuning
parameters within 100 steps, corresponding to about 5 min
of beamtime. Although one could increase the number of
tuning parameters to include all the available correctors, it
is important to note that using BO to tune a large number
of parameters can significantly slow down the optimization
process, as the search space grows exponentially. Therefore,
it is often preferred in practice to run several optimizations
with subsets of tuning parameters consecutively to find a
good enough setting for its speed and robustness.

An important aspect of BO to be mentioned is that it
provides more insight into the tuning task thanks to the GP
model. For example, we visualized the task using four air
coil correctors in 3. The predicted posterior mean function of
each pair of input parameters is shown, where the other two
parameters take the average values. It can be seen that the
pulse energy is very sensitive with respect to both horizontal
and vertical correctors in cell 3, whereas the condition is
more relaxed for the horizontal corrector in cell 7. This could
either assist the operator in monitoring the optimization
process during operation or help gain a better understanding
of the system’s dynamics afterwards.

CONCLUSION AND OUTLOOK
We successfully applied BO to the SASE pulse energy tun-

ing task at the European XFEL. Even without fine-tuning it to
the tasks, BO achieved comparable final pulse energies and
slightly faster convergence speed than the existing simplex
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Figure 3: GP Model visualization of the tuning task with
four correctors located in undulator cells 3, 7, and 8, where
X and Y denote horizontal and vertical respectively. The
two-dimensional subspace plots show the posterior mean
predicted by the GP model with different combinations of
correctors, with the other two taking the averaged values.
The one-dimensional histograms show the dependencies of
the pulse energy on the individual corrector.

method in the Ocelot optimizer, which is used in day-to-day
operations. With the help of advanced software implementa-
tions, one no longer needs dedicated beamtime or relies on
archived data for hyperparameter tuning, which significantly
reduces the overhead of applying BO for a new tuning task.
In addition, the fact that no expert knowledge is needed dur-
ing the application makes BO a promising operator-friendly
tool in the accelerator control room. Domain knowledge
could be incorporated into the BO to further increase its
performance, for example by a physics-informed kernel [11]
or neural network priors [21, 22] for the GP model. This ex-
tends BO’s applicability to higher-dimensional tuning tasks
or systems with more complex dynamics.

The Bayesian optimizer used in this paper is implemented
as a general-purpose tool, which could be easily applied to
various tuning tasks at different accelerators. In the future,
it is foreseen to integrate BO with the existing optimization
frameworks like Ocelot optimizer and Badger [23] and use
it as a routine tuning tool. The code package and data used
in this paper are available at the GitHub repository [24].
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